Multilayer Interparticle Linking Hybrid MOF-199 for Noninvasive Enrichment and Analysis of Plant Hormone Ethylene

作者:Zhang, Zhuomin*; Huang, Yichun; Ding, Weiwei; Li, Gongke
来源:Analytical Chemistry, 2014, 86(7): 3533-3540.
DOI:10.1021/ac404240n

摘要

Ethylene, an important plant hormone, is of utmost importance during many developmental processes of plants. However, the efficient enrichment and analysis of trace ethylene still remains a challenge. A simple and mild multilayer interparticle linking strategy was proposed to fabricate a novel hybrid MOF-199 enrichment coating. Strong chemical interparticle linkages throughout the coating improved the durability and reproducibility of hybrid MOF-199 coating dramatically. This coating performed a significant extraction superiority of ethylene over commonly used commercial coatings, attributed to the multiple interactions including "molecular sieving effect", hydrogen bonding, open metal site interaction, and pi-pi affinity. The hybridization of multiwalled carbon nanotubes (MWCNTs) with MOF-199 further improved the enrichment capability and also acted as a hydrophobic "shield" to prevent the open metal sites of MOF-199 from being occupied by water molecules, which effectively improved the moisture-resistant property of MOF-199/CNTs coating. Finally, this novel enrichment method was successfully applied for the noninvasive analysis of trace ethylene, methanol, and ethanol from fruit samples with relatively high humidity. The low detection limit was 0.016 mu g/L for ethylene. It was satisfactory that trace ethylene could be actually detected from fruit samples by this noninvasive method. Good recoveries of spiked grape, wampee, blueberry, and durian husk samples were obtained in the range of 90.0-114%, 79.4-88.6%, 78.5-86.8%, and 85.2-105% with the corresponding relative standard deviations of 4.8-9.8%, 6.9-8.9%, 3.8-8.1%, and 9.3-10.5% (n = 3), respectively.