摘要

Practical civil engineering problems are usually formulated in an infinite half-space domain, and a selected finite domain is required to analyze the dynamic responses of a fluid-saturated porous medium by the finite element method (FEM). Devising a method to deal with the boundaries of the finite domain is the key issue for this open system. In this paper, it two-dimensional spring-dashpot artificial boundary (SDAB) for transient analysis in a fluid-saturated porous media is developed. Based on Biot's dynamic theory of fluid-saturated porous media, the normal and tangential boundary stress formulae are deduced for out-going cylindrical body waves. The boundary stress is proportional to displacement and velocity, thus continuously distributed dashpots and springs can be placed on the artificial boundaries in the normal and tangential directions to simulate the energy absorption of the infinite media outside of the finite domain for the interior distributed source problems. In this paper, the input seismic motion can be realized by applying an equivalent load oil the SDAB for the seismic scattering problems of exterior distributed sources. Numerical examples are given and the analyzed results show that the SDAB and the method of wave motion input have good stability and acceptable accuracy.