MULTIFUNCTIONAL TITANIUM: SURFACE MODIFICATION PROCESS AND BIOLOGICAL RESPONSE

作者:Spriano S; Ferraris S*; Pan G; Cassinelli C; Verne E
来源:Journal of Mechanics in Medicine and Biology, 2015, 15(2): 1540001.
DOI:10.1142/S0219519415400011

摘要

A proper stimulation of the cell activity is the last request to the new biomaterials, intended for bone substitution and osseointegration. In this regard, the scientific literature suggests that the surface modification on a nanoscale is a major source of innovation. The nano features and multiscale topographies can stimulate cell differentiation and activity. Moreover, the presence of specific biological molecules grafted onto the biosurfaces can properly stimulate cells to tissue regeneration. The final aim is to promote a fast and physiological bone healing, at the implant site. In order to be suitable for implantation, the modified surfaces must sustain the implantation and working load/friction without damages. Two different innovative surface modifications of the Ti6Al4V alloy were tested in this research. The first one is an inorganic modification and it is aimed at inducing in vivo apatite precipitation (inorganic bioactivity) and cell interaction through nano features. The modified surface shows a complex topography (micro and nanoroughness), a modified surface chemistry (high density of hydroxyls groups), high wettability and protein absorption. Moreover, an additional biological modification by grafting of alkaline phosphatase (ALP) was tested. The modified surfaces were compared with the traditional polished and blasted ones, in terms of osteoblast adhesion, proliferation and morphology. A significant increase in the cell proliferation rate was observed on the modified materials. Moreover, the osteoblasts showed a more differentiated aspect and filopodia exploring the nanotextures on both the treated materials.