摘要

This work deals with the development of a new C-1 finite element for analysing the bending and torsional behaviour of rectangular piezoelectric laminated/sandwich composite beams. The formulation includes transverse shear, warping due to torsion, and elastic-electric coupling effects. It also accounts for the inter-layer continuity condition at the interfaces between layers, and the boundary conditions at the upper and lower surfaces of the beam. The shear strain is represented by a cosine function of a higher order in nature and thus avoiding shear correction factors. The warping function obtained from a three-dimensional elasticity solution is incorporated in the present model. An exact integration is employed in evaluating various energy terms due to the application of field consistency approach while interpolating the transverse shear and torsional strains. The variation of the electric potential through the thickness is taken care of in the formulation based on the observation of three-dimensional solution. The performance of the laminated piezoelectric element is tested comparing with analytical results as well as with the reference solutions evaluated using three-dimensional finite element procedure. A detailed study is conducted to highlight the influence of length-to-thickness ratio on the displacements, stresses and electric potential field of piezoelectric laminated beam structures subjected to flexural and torsional loadings.

  • 出版日期2004-9-28