摘要

In bimaxillary orthognathic surgery, the positioning of the maxilla and the mandible is typically accomplished via 2-splint technique, which may be the sources of several types of inaccuracy. To overcome the limitations of the 2-splint technique, we developed a new navigation method, which guided the surgeon to free-hand reposition the maxillomandibular complex as a whole intraoperatively, without the intermediate splint. In this preliminary study, the feasibility was demonstrated. Five patients with dental maxillofacial deformities were enrolled. Before the surgery, 3-dimensional planning was conducted and imported into a navigation system. During the operation, a tracker was connected to the osteotomized maxillomandibular complex via a splint. The navigation system tracked the movement of the complex and displayed it on the screen in real time to guide the surgeon to reposition the complex. The postoperative result was compared with the plan by analyzing the measured distances between the maxillary landmarks and reference planes, as determined from computed tomography data. The mean absolute errors of the maxillary position were clinically acceptable (<1.0 mm). Preoperative preparation time was reduced to 100 minutes on average. All patients were satisfied with the aesthetic results. This navigation method without intraoperative image registration provided a feasible means of transferring virtual planning to the real orthognathic surgery. The real-time position of the maxillomandibular complex was displayed on a monitor to visually guide the surgeon to reposition the complex. In this method, the traditional model surgery and the intermediate splint were discarded, and the preoperative preparation was simplified.