A preliminary in vivo study of the effects of OPN on rat liver regeneration induced by partial hepatectomy

作者:Wang, Gaiping; Zhao, Congcong; Chen, Shasha; Li, Xiaofang; Zhang, Ling; Chang, Cuifang; Xu, Cunshuan*
来源:Molecular Biology Reports, 2016, 43(12): 1371-1382.
DOI:10.1007/s11033-016-4071-2

摘要

Osteopontin (OPN) is a member of Th1 cytokine secreted by activated lymphocytes and macrophages. However, it deserves to be studied whether OPN could promote cell activation or proliferation, and then facilitate hepatic self-repair during liver regeneration (LR). This study is designed to further reveal the effects of OPN on LR in vivo. Firstly, quantitative reverse transcription-PCR (qRT-PCR) and western blot (WB) were utilized to validate the expression profile of endogenous OPN in rat regenerating livers after partial hepatectomy (PH). Then OPN expression vector, two shRNA expression vectors and their respective test vectors were successfully constructed. Afterwards, test vectors were administrated into mouse livers via tail vein to find the more efficient shRNA. Furthermore, OPN expression vector and the more efficient shRNA expression vector were injected into rat regenerating livers, and then the changes in liver regeneration and hepatic microstructure were respectively detected by liver regeneration rate and HE staining, while the expressions of several marker genes were detected by qRT-PCR and WB. Endogenous OPN was strikingly up-regulated in both mRNA and protein level during LR, especially at 12 and 72 h after PH. The shRNA expression vector Opn(313) was found to be more efficient than Opn(887) in silencing the expression of Opn. Then OPN expression vector and Opn(313) were injected into rat remnant livers, and it showed that OPN overexpression aggravated hepatic necrosis and leukocytes infiltration, while OPN silencing inhibited liver regeneration rate and the expressions of PCNA and CCL2, but augmented that of BAX. In conclusion, OPN might enhance inflammation and cell proliferation, attenuate cell apoptosis, and ultimately facilitate liver regeneration at the termination stage of liver regeneration.