摘要

Aluminum alloy castings are normally water quenched after solution treatment to improve mechanical properties. Rapid water quenching can result in high-residual stress and severe distortion which significantly affect functionality and performance of the products. To optimize product design and durability, one needs to model and predict residual stress and distortion produced in the water-quenched components. In this article, a finite element-based approach was developed to simulate the transient heat transfer and residual stress development during water quenching. In this approach, an iterative zone-based heat transfer algorithm was coupled with material constitutive model called mechanical threshold stress (MTS). With the integrated models, a good agreement was achieved between the numerically predicted and the experimentally measured residual stresses in the aluminum alloy frame-shape casting. The integrated FEA-based heat transfer and residual stress models were also applied to a water-quenched cast aluminum cylinder head with a great success.

  • 出版日期2011-12