摘要

Biological materials are effectively synthesized, controlled, and used for a variety of purposes in Nature in spite of limitations in energy, quality, and quantity of their building blocks. Whereas the chemical composition of materials in the living world plays some role in achieving functional properties, the way components are connected at different length scales defines what material properties can be achieved, how they can be altered to meet functional requirements, and how they fail in disease states and other extreme conditions. Recent work has demonstrated this using large-scale computer simulations to predict materials properties from fundamental molecular principles, combined with experimental work and new mathematical techniques to categorize complex structure-property relationships into a systematic framework. Enabled by such categorization, we discuss opportunities based on the exploitation of concepts from distinct hierarchical systems that share common principles in how function is created, even linking music to materials science.

  • 出版日期2013-2