摘要

We investigated the efficiency droop and polarization-induced internal electric field of InGaN blue light-emitting diodes (LEDs) grown on silicon(111) and c-plane sapphire substrates. The efficiency droop of the LED sample grown on silicon substrates was considerably lower than that of the identically fabricated LED sample grown on sapphire substrates. Consequently, the LED on silicon showed higher efficiency at a sufficiently high injection current despite the lower peak efficiency caused by the poorer crystal quality. The reduced efficiency droop for the LED on silicon was attributed to its lower internal electric field, which was confirmed by reverse-bias electro-reflectance measurements and numerical simulations. The internal electric field of the multiple quantum wells (MQWs) on silicon was found to be reduced by more than 40% compared to that of the MQWs on sapphire, which resulted in a more homogenous carrier distribution in InGaN MQWs, lower Auger recombination rates, and consequently reduced efficiency droop for the LEDs grown on the silicon substrates. Owing to its greatly reduced efficiency droop, the InGaN blue LED on silicon substrates is expected to be a good cost effective solution for future lighting technology.

  • 出版日期2017-4-12