摘要

The hydrodynamic problem of a two-dimensional asymmetrical wedge entering calm water obliquely at constant speed is analyzed based on the velocity potential theory. The gravity effect on the flow is ignored based on the assumption that the ratio of the entry speed to the acceleration due to gravity is much larger than the time scale of interest. The problem of this similarity flow is solved by a boundary element method together with an analytical solution for the jet based on the shallow water approximation. Various results are provided for the wave elevation, pressure distribution and force at different deadrise angles and at different oblique entry. The effects of asymmetry and horizontal speed on these results are investigated.