摘要

The southeastern coastal plain of South Australia contains a spectacular and world-renowned suite of Quaternary calcareous eolianites. This study is focused on the provenance of components in the Holocene, actively forming sector, of these carbonate eolian deposits. Research was carried out along seven transects across a lateral distance of 120km from approximate to 30m water depth offshore across the beach and into the dunes. Offshore sediments were acquired via grab sampling and SCUBA. Results indicate that dunes of the southern Lacepede and Bonney coasts are composed of siliciclastic particles (mainly quartz), relict allochems, Cenozoic and limestone pieces, but dominated by Holocene invertebrate and calcareous algal biofragments. The most numerous grains are from molluscs > benthic foraminifera coralline algae, > echinoids and > bryozoans. Most of these particles originate in carbonate factories such as macroalgal forests, rocky reefs, seagrass meadows and low-relief sea-floor rockgrounds. Incorporation of Holocene carbonate skeletons into coastal dunes, however, depends on a combination of: (1) the addition of infauna from intertidal and nearshore environments; (2) the physical characteristics of different allochems and their ability to withstand bioerosion, fragmentation and abrasion; (3) the character of the wave and swell climate; and (4) the nature of eolian transport. Most eolian dune sediment is derived from nearshore and intertidal carbonate factories. This is well illustrated by the abundance of robust infaunal bivalves that inhabit the nearshore sands and virtual absence of bryozoans that are common as sediment particles in offshore water depths >15m. Importantly, the calcareous eolianites in this cool-water, open-platform carbonate setting are not simply an allochthonous reflection of the offshore marine shelf factories, but more a product of autothonous shallow nearshore-intertidal skeletal production and modification. These findings explain the preponderance of mollusc fragments and lack of bryozoans in similar older Pleistocene calcareous eolianites up to ca 1 million years old across approximate to 2000km of southern Australia with implications for the older rock record.

  • 出版日期2018