摘要

Based on the theory of material mechanics and thermal stress analysis, the stress distribution of combined electrode for crystalline silicon solarmodule was studied for the first time. The shear stress and normal stress distribution of soldered structure for crystalline silicon solar cells under the thermal field were discussed. And the results show that the stress distribution is not simply linear relationship as some results found. But there is a stress concentration at the edge, which was considered as the true reason that caused microcracks at the edge of soldered solar cells. The conclusions we got in this paper provide a theoretical basis for deceasing the breakage rates of soldered crystalline silicon solar cells and improving the reliability of crystalline silicon solar modules.