摘要

Nanometre accuracy and resolution metrology over technically relevant areas is becoming a necessity for the progress of nanomanufacturing. At the National Institute of Standards and Technology, we are developing the Molecular Measuring Machine, a scanned probe microscope (SPM) and Michelson interferometer based metrology instrument, designed to achieve nanometre measurement uncertainty for point-to-point measurements over a 50 mm. by 50 mm working area. The salient design features are described, along with example measurements that demonstrate the measurement capabilities so far achieved. Both long-range measurements of sub-micrometre pitch gratings over 10 mm, and short-range, high-resolution measurements of a molecular crystal lattice have been accomplished. The estimated relative measurement uncertainty so far attained for pitch measurements is 6 x 10(-5), coverage factor k = 2. We have also used this instrument and scanning probe oxidation lithography for creating some simple nanometre dimension patterns that could serve as prototype calibration standards, utilizing the SPM probe tip positioning accuracy.

  • 出版日期2005-11