摘要

A genomic pattern of new gene origination is often dependent on a genomic method that can efficiently identify a statistically adequate number of recently originated genes. The heterochromatic regions have often been viewed as genomic deserts with low coding potential and thus a low flux of new genes. However, increasing reports revealed unexpected roles of heterochromatic regions in the evolution of genes and genomes. We identified recently retroposed genes that originated in heterochromatic regions in Drosophila, by developing microarray-based comparative genomic hybridization (CGH) with multiple species. This new gene family, named Ifc-2h, originated in the common ancestor of the clade of D. simulans, D. mauritiana, and D. sechellia. The sequence features and phylogenetic distribution indicated that Ifc-2h resulted from the retroposition from its parental gene, Infertile crescent (Ifc), and integrated into heterochromatic region of common ancester of the three sibling species 2 million years ago. Expression analysis revealed that Ifc-2h had developed a new expression pattern by recruiting a putative regulatory element from its target sequence. The distribution of indel variation in Ifc-2h of D. simulans and D. mauritiana revealed a significant sequence constraint, suggesting that the Ifc-2h gene may be functional. These analyses cast fresh insight into the evolution of heterochromatin and the origin of its coding regions.

  • 出版日期2007-2