摘要

The kinetically active two dimensional surface of graphene oxide (GrO) plays an important role in understanding the chemistry of graphene. The GrO is comprises of carbon and oxygen while the f-(6-AIND) GrO contains nitrogen along with carbon and oxygen. The prominent thermal instability of GrO is widely explored. However, due to the synergistic impact of their constituting elements, the thermal and electrochemical stability of f-(6-AIND) GrO enhances after N-doping with nitrogen containing heterocycles like 6-Aminoindazole. Hence it is essential to probe the mutual impact of various functionalities present over the surface of GrO, to understand the mechanism of direct functionalization of GrO with thermal and electrochemical stabilities. Therefore, the decomposition kinetics of discrete atomic domains and their effect on thermal stability of f-(6-AIND) GrO was revealed with spectroscopic analysis and thermal assessment. Additionally, the mechanism of thermal transformation is precisely developed to demonstrate the impact of heat on weight loss due to the mass transfer. Likewise, the electrochemical properties can be well understood with the help of mechanism of electrochemical activity and cyclic voltammetry experiments. Also, the f-(6-AIND) GrO is confirmed with the help of various surface analysis techniques like FTIR, EDS, HR-XPS, HR-TEM, CV, SAED, TGA, DSC and UV-vis.

  • 出版日期2016-3-15