摘要

A theoretical analysis of buoyancy-driven instability under transient basic fields is conducted in an initially quiescent, fluid-saturated, horizontal porous layer. Darcy's law is used to explain characteristics of fluid motion, and the anisotropy of permeability is considered. Under the Boussinesq approximation, the energy stability equations are derived following the energy formulation. The stability equations are analyzed numerically under the relaxed energy stability concept. For the various anisotropic ratios, the critical times are predicted as a function of the Darcy-Rayleigh number, and the critical Darcy-Rayleigh number is also obtained. The present predictions are compared with existing theoretical ones.

  • 出版日期2013-6