摘要

An ultra-relativistic electron beam propagating through a high-Z solid triggers an electromagnetic cascade, whereby a large number of high-energy photons and electron-positron pairs are produced mainly via the bremsstrahlung and Bethe-Heitler processes, respectively. These mechanisms are routinely used to generate positron beams in conventional accelerators such as the electron-positron collider (LEP). Here we show that the application of similar physical mechanisms to a laser-driven electron source allows for the generation of high-quality positron beams in a much more compact and cheaper configuration. We anticipate that the application of these results to the next generation of lasers might open the pathway for the realization of an all-optical high-energy electron-positron collider.

  • 出版日期2015-4