摘要

In this paper, a novel and cost-effective homogeneous detection method was constructed for the detection of genomic DNA and Staphylococcus aureus (S. aureus), based on the noncovalent assembly of DNAzyme-labeled detection probe and single-walled carbon nanotubes (SWNTs). When the target genomic DNA and hemin was existed in the detection solution, the detection probe wrapped on the SWNTs by pi-stacking interactions would keep away from SWNTs and form a DNAzyme-self-assembly construction. This DNAzyme construction could catalyze 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS(2-)) and generate a colored product which could lead to the absorbance changes. Hence, according to its catalyzed capacity, the DNAzyme construction could amplify the detection signal. The concentration of target DNA could be quantified by exploiting their optical absorption changes at 414 nm and the concentration limit of detection of the method was 30 nM. And this detection method detected S. aureus quantitatively. In addition, this work proved that the method obtain higher detection sensitivity compared with the method without SWNTs because of the protection profile of SWNTs towards the detection probe.