摘要

The clinical use of radiation image detectors is influenced by the degree to which patients are exposed to radiation. Phosphors are being used as the radiation receptor materials in a number of radiation imaging systems for the detection of radiation. Rare earth phosphors such as those of Gd, Y, Lu, and La are attracting attention in particular as they exhibit improved properties. However, there has not been any research on the conditions for the synthesis of these phosphors, including the optimal concentrations in which the sensitizer should be added to them. Therefore, in this study, the optimal conditions for the phosphor synthesis were determined by analyzing the characteristics of the phosphors fabricated using various sensitizer concentrations. The deposition method used to form films of the synthesized phosphors was screen printing. This technique is suitable for large-area deposition and allowed for imaging to be performed in conjunction with a complementary metal-oxide semiconductor (CMOS) image detector. The phosphors synthesized were Gd2O3:Eu and Lu2O3:Eu, and the sensitizer used was citric acid, which was added in varying concentrations (0.00-0.05 g) to the phosphors during synthesis. Films of the phosphors 5 x 5 cm in size, which was the size of the active area of the CMOS image sensor, and 100-250 mu m in thickness were formed. The structural characteristics of the phosphors were determined through X-ray diffraction analyses and scanning electron microscopy, and the optical characteristics through photoluminescence (PL) measurements. A CMOS-based X-ray detector was manufactured by attaching the phosphor films to the CMOS image sensor and evaluating the modulation transfer functions of the images obtained. The results showed that of all the phosphor samples synthesized, the Gd2O3:Eu and Lu2O3:Eu samples synthesized using 0.02 g of citric acid exhibited the best luminescence characteristics.

  • 出版日期2013-3