Expression of caveolin-1 in the interfollicular but not the follicle-associated epithelial cells in the bursa of fabricius of chickens

作者:Bodi Ildiko; Minko Krisztina; Folker Orsolya; Benyeda Zsofia; Felfoldi Balazs; Magyar Attila; Kiss Anna; Palya Vilmos; Olah Imre*
来源:Journal of Morphology, 2018, 279(1): 17-26.
DOI:10.1002/jmor.20749

摘要

The surface epithelium of the bursa of Fabricius consists of interfollicular (IFE) and follicle-associated epithelium (FAE). The IFE comprises (i) cylindrical-shaped secretory cells (SC) and (ii) cuboidal basal cells (BCs). The FAE provides histological and two-way functional connections between the bursal lumen and medulla of the follicle. We used a carbon solution and anti-caveolin-1 (Cav-1) to study the endocytic activity of FAE. Carbon particles entered the intercellular space of FAE, but the carbon particles were not internalized by the FAE cells. Cav-1 was not detectable in the FAE cells or the medulla of the bursal follicle. The absence of Cav-1 indicates that no caveolin-mediated endocytosis occurs in the FAE cells, B cells, bursal secretory dendritic cells (BSDC), or reticular epithelial cells. Surprisingly, a significant number of Cav-1 positive cells can be found among the SC, which are designated SC II. Cav-1 negative cell are called SC I, and they produce mucin for lubricating the bursal lumen and duct. Occasionally, BCs also express Cav-1, which suggests that BC is a precursor of a SC. Transmission electron microscopy confirmed the existence of type I and II SC. The SC II are highly polarized and have an extensive trans-Golgi network that is rich in different granules and vesicles. Western blot analysis of bursa lysates revealed a 21-23 kDa compound (caveolin) and Filipin fluorescence histochemistry provided evidence for intracellular cholesterol. High amount of cholesterol in the feces shows the cholesterol efflux from SC II. The presence of Cav-1 and cholesterol in SC II indicates, that the bursa is a complex organ in addition to possessing immunological function contributes to the cholesterol homeostasis in the chickens.

  • 出版日期2018-1