摘要

Head-related transfer functions (HRTFs) incorporate fundamental cues required for human spatial hearing and are often applied to auralize results obtained from room acoustic simulations. HRTFs are typically available for various directions of sound incidence and a fixed head-above-torso orientation (HATO). If-in interactive auralizations-HRTFs are exchanged according to the head rotations of a listener, the auralization result most often corresponds to a listener turning head and torso simultaneously, while-in reality-listeners usually turn their head independently above a fixed torso. In the present study, we show that accounting for HATO produces clearly audible differences, thereby suggesting the relevance of correct HATO when aiming at perceptually transparent binaural synthesis. Furthermore, we addressed the efficient representation of variable HATO in interactive acoustic simulations using spatial interpolation. Hereby, we evaluated two different approaches: interpolating between HRTFs with identical torso-to-source but different head-to-source orientations (head interpolation) and interpolating between HRTFs with the same head-to-source but different torso-to-source orientations (torso interpolation). Torso interpolation turned out to be more robust against increasing interpolation step width. In this case the median threshold of audibility for the head-above-torso resolution was about 25 degrees, whereas with head interpolation the threshold was about 10 degrees. Additionally, we tested a non-interpolation approach (nearest neighbor) as a suitable means for mobile applications with limited computational capacities.

  • 出版日期2015-8