摘要

The FitzHugh Nagumo equations are known to admit fast traveling pulse solutions with monotone tails. It is also known that this system admits traveling pulses with exponentially decaying oscillatory tails. Upon numerical continuation in parameter space, it has been observed that the oscillations in the tails of the pulses grow into a secondary excursion resembling a second copy of the primary pulse. In this paper, we outline in detail the geometric mechanism responsible for this single-to-double-pulse transition, and we construct the transition analytically using geometric singular perturbation theory and blow-up techniques.

  • 出版日期2018