摘要

Decadal sea-level variability along the coast of Japan and its relation to large-scale ocean circulation changes from 1993 to 2010 was investigated using tide-gauge and satellite-derived sea-level data. A singular value decomposition (SVD) analysis is performed between coastal sea levels of Japan and sea levels in the western North Pacific. The first SVD mode reveals that the northward shifts of the Kuroshio Extension (KE) jet and the Kuroshio southeast of Japan accompany the coastal sea-level rise in the early 2000s and 2010, and their southward shifts accompany the coastal sea-level fall in the late 1990s and the late 2000s. The shifts of the KE jet are induced by westward propagating Rossby wave from the eastern North Pacific, which is concentrated along the KE jet axis as jet-trapped Rossby waves. The resulting sea-level changes along the coast of Japan show a strong spatial contrast. The sea-level fluctuation is quite large along the southeastern coast of Japan that is under the direct influence of the jet-trapped Rossby waves, and also large in the western coast of Japan, probably due to coastal waves that are excited by the incoming Rossby waves, but is small north of the KE jet latitude. Hence, the nature of the wave trapped by the KE jet produces an active zone and a shadow zone of coastal sea-level variability of Japan. Our results indicate that the correct representation of western boundary currents is necessary for reliable prediction of future coastal sea-level changes. Key Points Decadal sea level change of the coast of Japan shows strong spatial contrast The nature of the Kuroshio Extension jet produces the strong spatial contrast Understanding of western boundary currents is necessary for sea level prediction

  • 出版日期2014-1