摘要

In this paper, the analysis and design of a modular three-phase ac-to-dc converter using single-phase isolated CUK rectifier modules is discussed based on power balance control technique. This paper analyzes the operation of a modular converter as continuous-conduction-mode power factor correction (CCM-PFC). Design equations, as well as an average small-signal model of the proposed system to aid the control loop design are derived. It is used to obtain the inductor current compensator, thus the output impedance and audio susceptibility become zero, and therefore, the output voltage of the converter presented in this paper is independent of the variations of the dc load current and the utility voltage. The control strategy consists of a single output voltage loop and three-inductor current calculator. The main objective of the proposed system is to reduce the number of stages and improve dynamic response of dc bus voltage for distributed power system. The proposed scheme offers simple control strategy, flexibility in three-phase delta or star-connected, simpler design, fast transient response, good inductor current sharing, and power factor closed to unity. Both simulation and experimental results are presented. They are in agreement with the theoretical analysis and experimental work.

  • 出版日期2009-8