Mutations in the NB-ARC domain of I-2 that impair ATP hydrolysis cause autoactivation

作者:Tameling WIL; Vossen JH; Albrecht M; Lengauer T; Berden JA; Haring MA; Cornelissen BJC; Takken FLW*
来源:Plant Physiology, 2006, 140(4): 1233-1245.
DOI:10.1104/pp.105.073510

摘要

Resistance (R) proteins in plants confer specificity to the innate immune system. Most R proteins have a centrally located NB-ARC (nucleotide-binding adaptor shared by APAF-1, R proteins, and CED-4) domain. For two tomato (Lycopersicon esculentum) R proteins, I-2 and Mi-1, we have previously shown that this domain acts as an ATPase module that can hydrolyze ATP in vitro. To investigate the role of nucleotide binding and hydrolysis for the function of I-2 in planta, specific mutations were introduced in conserved motifs of the NB-ARC domain. Two mutations resulted in autoactivating proteins that induce a pathogen-independent hypersensitive response upon expression in planta. These mutant forms of I-2 were found to be impaired in ATP hydrolysis, but not in ATP binding, suggesting that the ATP-rather than the ADP-bound state of I-2 is the active form that triggers defense signaling. In addition, upon ADP binding, the protein displayed an increased affinity for ADP suggestive of a change of conformation. Based on these data, we propose that the NB-ARC domain of I-2, and likely of related R proteins, functions as a molecular switch whose state (on/off) depends on the nucleotide bound (ATP/ADP).

  • 出版日期2006-4