Argonaute 2 immunoprecipitation revealed large tumor suppressor kinase 1 as a novel proapoptotic target of miR-21 in T cells

作者:Teteloshvili, Nato; Smigielska-Czepiel, Katarzyna; Yuan, Ye; Seitz, Annika; de Jong, Debora; Rutgers, Bea; Jellema, Pytrick; van der Lei, Roelof Jan; Slezak-Prochazka, Izabella; Brouwer, Elisabeth; Boots, Annemieke M. H.; Kroesen, Bart-Jan; van den Berg, Anke; Kluiver, Joost*
来源:FEBS Journal, 2017, 284(4): 555-567.
DOI:10.1111/febs.14011

摘要

MicroRNA (miR)-21 is an important suppressor of T-cell apoptosis that is also overexpressed in many types of cancers. The exact mechanisms underlying the antiapoptotic effects of miR-21 are not well understood. In this study, we used the Jurkat T-cell line as a model to identify apoptosis-associated miR-21 target genes. We showed that expression of miR-21 rapidly increases upon alpha CD3/alpha CD28 activation of Jurkat cells. Inhibition of miR-21 reduced cell growth which could be explained by an increase in apoptosis. MicroRNA target gene identification by AGO2 RNA-immunoprecipitation followed by gene expression microarray (RIP-Chip) resulted in the identification of 72 predicted miR-21 target genes that were at least twofold enriched in the AGO2-IP fraction of miR-21 overexpressing cells. Of these, 71 were at least twofold more enriched in the AGO2-IP fraction of miR-21 overexpressing cells as compared to AGO2-IP fraction of control cells. The target gene for which the AGO2-IP enrichment was most prominently increased upon miR-21 overexpression was the proapoptotic protein LATS1. Luciferase reporter assays and western blot analysis confirmed targeting of LATS1 by miR-21. qRT-PCR analysis in primary T cells showed an inverse expression pattern between LATS1 transcript levels and miR-21 upon T-cell stimulation. Finally, LATS1 knockdown partially rescued the miR-21 inhibition-induced impaired cell growth. Collectively, these data identify LATS1 as a miR-21 target important for the antiapoptotic function of miR-21 in T cells and likely also in many types of cancer.