摘要

Understanding the factors controlling insect emergence from streams has applications to ecological theory regarding cross-boundary flux, along with practical value for monitoring stream function after restoration projects. We hypothesized that stream microhabitat would have effects on emergence that were independent of those mediated by the local stock of benthic macroinvertebrates. We set 50 emergence traps in a third-order stream in northern Minnesota, USA, during two study periods and used structural equation modeling to examine direct and indirect effects of benthic stock and microhabitat features on emergence. Emergence by biomass showed direct positive relationships to substrates of fines and detritus in the first sampling period, and to shallow depth and wood area in the second period. Emergence by abundance had direct positive relationships with benthic stock, CPOM, and fewer macrophytes in the first period, and with benthic stock and periphyton in the second period. Fine substrates may act to concentrate burrowing larvae, whereas CPOM and particularly wood may intercept drifting pre-emergent insects and provide exiting surfaces. Shallow depths may reduce the extent to which resident insects drift downstream (and leave the sample area) while emerging. Periphyton may be an indicator for patches with greater illumination, which itself attracts emergers. Our results suggest emergence is sensitive to environmental conditions at the microhabitat scale, and that stream restoration activities should consider habitat for emerging insects when designing projects.

  • 出版日期2014-4

全文