An electro-mechanical multiscale model of uterine pregnancy contraction

作者:Yochum Maxime; Laforet Jeremy; Marque Catherine
来源:Computers in Biology and Medicine, 2016, 77: 182-194.
DOI:10.1016/j.compbiomed.2016.08.001

摘要

Detecting preterm labor as early as possible is important because tocolytic drugs are much more likely to delay preterm delivery if administered early. Having good information on the real risk of premature labor also leads to fewer women who do not need aggressive treatment for premature labor threat. Currently, one of the most promising ways to diagnose preterm labor threat is the analysis of the electrohysterogram (EHG). Its characteristics have been related to preterm labor risk but they have not proven to be sufficiently accurate to use in clinical routine. One of the reasons for this is that the physiology of the pregnant uterus is insufficiently understood. Models already exist in literature that simulate either the electrical or the mechanical component of the uterine smooth muscle. Few include both components in a co-simulation of electrical and mechanical aspects. A model that can represent realistically both the electrical and the mechanical behavior of the uterine muscle could be useful for better understanding the EHG and therefore for preterm labor detection. Processing the EHG considers only the electrical component of the uterus but the electrical activity does not seem to explain by itself the synchronization of the uterine muscle that occurs during labor and not at other times. Recent studies have demonstrated that the mechanical behavior of the uterine muscle seems to play an important role in uterus synchronization during labor. The aim of the proposed study is to link three different models of the uterine smooth muscle behavior by using co-simulation. The models go from the electrical activity generated at the cellular level to the mechanical force generated by the muscle and from there to the deformation of the tissue. The results show the feasibility of combining these three models to model a whole uterus contraction on 3D realistic uterus model.

  • 出版日期2016-10-1