A Multifunctional Thin Film Au Electrode Surface Formed by Consecutive Electrochemical Reduction of Aryl Diazonium Salts

作者:Harper Jason C; Polsky Ronen; Wheeler David R; Lopez DeAnna M; Arango Dulce C; Brozik Susan M*
来源:Langmuir, 2009, 25(5): 3282-3288.
DOI:10.1021/la803215z

摘要

A multifunctional thin film surface capable of immobilizing two diverse molecules on a single gold electrode was prepared by consecutive electrodeposition of nitrophenyl and phenylboronic acid pinacol ester (PBA-PE) diazonium salts. Activation of the stacked film toward binding platinum nanoparticles (PtNPs) and yeast cells occurred via chemical deprotection of the pinacol ester followed by electroreduction of nitro to amino groups. FTIR spectral analysis was used to study and verify film composition at each stage of preparation. The affect of electrodeposition protocol over the thickness of the nitrophenyl and PBA-PE layers was explored and had a profound impact on the film properties. Thicker nitrophenyl films led to diminished PBA-PE diazonium reduction currents during assembly and decreased phenylboronic acid (PBA) layer thickness while allowing for higher PtNP loading and catalytic currents from PtNP-mediated peroxide reduction. Multilayer PBA films could be formed over the nitrophenyl film; however, only submonlayer PBA films permitted access to the underlying layer. The sequence of functional group activation toward binding was also shown to be significant, as perchlorate used to remove pinacol ester also converted aminophenyl groups accessible to the solution to nitrophenyl groups, preventing electrostatic PtNP binding. Finally, SEM images show PtNPs immobilized in close proximity (nanometers) to captured yeast cells on the PBA-aminophenyl-Au film. Such multibinding functionality films that maintain conductivity for subsequent electrochemical measurements hold promise for the development of electrochemical and/or optical platforms for fundamental cell studies, genomic and proteomic analysis, and biosensing.

  • 出版日期2009-3-3