摘要

A striking phenomenon in face perception is the configural effect in which a difference in a single part appears more distinct in the context of a face than it does by itself. The face context would be expected to increase search complexity, rendering discrimination more-not less-difficult. Remarkably, there has never been a biologically plausible explanation of this fundamental signature of face recognition. We show that the configural effect can be simply derived from a model composed of overlapping receptive fields (RFs) characteristic of early cortical simple-cell tuning but also present in face-selective areas. Because of the overlap in RFs, the difference in a single part is not only represented in the RFs centered on it but also propagated to larger RFs centered on distant parts of the face. Dissimilarity values computed from the model between pairs of faces and pairs of face parts closely matched the recognition accuracy of human observers who had learned a set of faces composed of composite parts and were tested on wholes (Which is Larry?) and parts (Which is Larry's nose?). When stimuli were high versus low passed the contributions of different spatial frequency (SF) bands to the configural effect were largely comparable. Therefore, it was the larger RFs rather than the low SFs that accounted for most of the configural effect. The representation explains why, relative to objects, face recognition is so adversely affected by inversion and contrast reversal and why distinctions between similar faces are ineffable.

  • 出版日期2014