摘要

Stress sensitivity analysis constitutes an essential problem in gradient-based structural shape optimization. Unlike the traditional grid perturbation method (GPM), a general material perturbation method (MPM) using a fixed mesh is originally developed to simplify the sensitivity analysis scheme in this work. A domain function is introduced to characterize the boundary perturbation, whose effect is considered by correcting simultaneously stiffness matrices and stresses of elements attaching the perturbed boundary. Implementations of the MPM on shape optimization of plane stress, axisymmetric, 3D and thin-walled curved shell problems show that the proposed method has the advantage of efficient and explicit computing of stress sensitivities.