摘要

The effectiveness of perforated liner with bias flow on the control of combustion instability is investigated. Combustion instabilities result from the coupling between acoustic waves and unsteady combustion heat release. Sometimes the phenomenon happens in afterburners of aeroengine and rocket engine, and it always causes damage to flame holders, liner sections and other engine components. Passive methods, such as perforated liner, are often used to suppress such instabilities in application. In this article, first, a burner testbed is built in order to study the characteristic of this phenomenon. The unstable frequencies and unstable area are investigated experimentally. Then an analytical model, based on "transfer element method", is developed and the numerical results are compared with those from experiments. At last the perforated liner is applied to the burner to suppress the instabilities. The results show that the sound pressure can be greatly reduced by the perforated liner.