摘要

Multiwalled carbon nanotube/TiO2 multilayer nanocomposite was successfully deposited on the fluorine-doped tin oxide (FTO) glass via layer-by-layer assembly technique to modify interfacial contact between the FTO surface and nanocrystalline TiO2 layer as well as carbon nanotube/TiO2 contacts in photoanode of dye sensitized solar cell. Using this approach, binder-free interfacial thin film was developed with nonagglomerated, well dispersed MWCNTs on FTO and into TiO2 matrix and with maximum covering of TiO2 nanoparticles on MWCNTs. Introduction of MWCNTs/TiO2 interfacial layer into the TiO2 photoanode increased short circuit current density (J(sc)) from 11.90 to 17.25 mA/cm(2) and open circuit voltage (V-oc) from 730 mV to 755 mV, whereas there was no notable change in the fill factor (FF). Consequently, power conversion efficiency (eta) was enhanced from 5.32% to 7.53%, yielding a 41.5% enhancement. The results suggest that our simple strategy can integrate reduction of back electron reaction at FTO/TiO2 interface with the effective charge transport ability of carbon nanotubes and possessing high surface area for efficient dye loading.

  • 出版日期2017-11-15