摘要

Hoist wire ropes often operate in a high-speed swing status, and they are beyond the capability of present portable magnet magnetic flux leakage (MFL) sensors based on the yoke magnetic method due to its strong magnetic force and large weight. Unlike the yoke method, an open permanent magnetization method is proposed by theoretical analyses and also verified by the finite element method (FEM) and experiments. An open permanent magnetization method features much weaker magnetic interaction force and similar magnetization capability compared to the traditional yoke method. Meanwhile, the relevant detection sensor for wire rope is designed by simulation optimization to further test the preponderant features. Furthermore, experimental comparisons between the open and yoke sensors for wire rope inspection were also conducted, which successfully confirmed the characterization of smaller magnetic interaction force and less wear and damage in contrast with traditional technologies. Finally, the corresponding MFL apparatus was developed and applied, which demonstrated the good practicability for the nondestructive testing of hoist ropes under poor working conditions.