Advanced quantitative imaging and biomechanical analyses of periosteal fibers in accelerated bone growth

作者:Chaudhary Rajeev; Lee Ming Song; Mubyana Kuwabo; Duenwald Kuehl Sarah; Johnson Lyndsey; Kaiser Jarred; Vanderby Ray Jr; Eliceiri Kevin W; Corr David T; Chin Matthew S; Li Wan Ju; Campagnola Paul J; Halanski Matthew A*
来源:Bone, 2016, 92: 201-213.
DOI:10.1016/j.bone.2016.08.021

摘要

Purpose: The accepted mechanism explaining the accelerated growth following periosteal resection is that the periosteum serves as a mechanical restraint to restrict physeal growth. To test the veracity of this mechanism we first utilized Second Harmonic Generation (SHG) imaging to measure differences of periosteal fiber alignment at various strains. Additionally, we measured changes in periosteal growth factor transcription. Next we utilized SHG imaging to assess the alignment of the periosteal fibers on the bone both before and after periosteal resection. Based on the currently accepted mechanism, we hypothesized that the periosteal fibers adjacent to the physis should be more aligned (under tension) during growth and become less aligned (more relaxed) following metaphyseal periosteal resection. In addition, we measured the changes in periosteal micro- and macro-scale mechanics. Methods: 30 seven-week old New Zealand White rabbits were sacrificed. The periosteum was imaged on the bone at five regions using SHG imaging. One centimeter periosteal resections were then performed at the proximal tibial metaphyses. The resected periosteal strips were stretched to different strains in a materials testing system (MTS), fixed, and imaged using SHG microscopy. Collagen fiber alignment at each strain was then determined computationally using CurveAlign. In addition, periosteal strips underwent biomechanical testing in both circumferential and axial directions to determine modulus, failure stress, and failure strain. Relative mRNA expression of growth factors: TGF beta-1,-2,-3, Ihh, PTHrP, Gli, and Patched were measured following loading of the periosteal strips at physiological strains in a bioreactor. The periosteum adjacent to the physis of six tibiae was imaged on the bone, before and after, metaphyseal periosteal resection, and fiber alignment was computed. One-way ANOVA statistics were performed on all data. Results: Imaging of the periosteum at different regions of the bone demonstrated complex regional differences in fiber orientation. Increasing periosteal strain on the resected strips increased periosteal fiber alignment (p < 0.0001). The only exception to this pattern was the 10% strain on the tibial periosteum, which may indicate fiber rupture at this non-physiologic strain. Periosteal fiber alignment adjacent to the resection became less aligned while those adjacent to the physes remained relatively unchanged before and after periosteal resection. Increasing periosteal strain on the resected strips increased periosteal fiber alignment (p < 0.0001). The only exception to this pattern was the 10% strain on the tibial periosteum, which may indicate fiber rupture (and consequent retraction) at this non-physiologic strain. Increasing periosteal strain revealed a significant increase in relative mRNA expression for Ihh, PTHrP, Gli, and Patched, respectively. Conclusion: Periosteal fibers adjacent to the growth plate do not appear under tension in the growing limb, and the alignments of these fibers remain unchanged following periosteal resection. Significance: The results of this study call into question the long-accepted role of the periosteum acting as a simple mechanical tether restricting growth at the physis.