Assembly and Evolution of Amorphous Precursors in Zeolite L Crystallization

作者:Kumar Manjesh; Li Rui; Rimer Jeffrey D*
来源:Chemistry of Materials, 2016, 28(6): 1714-1727.
DOI:10.1021/acs.chemmater.5b04569

摘要

The formation of amorphous bulk phases in zeolite synthesis is a common phenomenon, yet there are many questions pertaining to the physicochemical properties of these precursors and their putative role(s) in the growth of microporous materials. Here, we study the formation of zeolite L, which is a large-pore framework (LTL type) with properties that are well-suited for catalysis, separations, photonics, and drug delivery, among other applications. We investigate the structural and morphological evolution of aluminosilicate precursors during zeolite L crystallization using a variety of colloidal and microscopy techniques. Dynamic light scattering measurements of growth solutions and scanning electron microscopy (SEM) images of extracted solids collectively reveal that zeolite L precursors assemble through a series of steps, leading to branched worm-like particles (WLPs). Transmission electron microscopy and electron dispersion spectroscopy show that WLPs have a heterogeneous composition that predominantly consists of silica-rich domains. We demonstrate that static light scattering can be used to identify the approximate induction time and is a reliable method to quantitatively track the extent of crystallization. During the induction period, the average size of zeolite L precursors monotonically increases by the accretion of soluble species. Precursor growth continues until the onset of zeolite L nucleation when WLPs reach a maximum size. During zeolite L growth, the number density of precursors decreases in favor of a growing population of crystallites. Ex situ SEM images reveal the progressive formation of crystal nuclei, which deviates from the classical LaMer process that posits a nearly instantaneous generation (or burst) of nuclei. These findings provide evidence of zeolite L growth via a nonclassical pathway involving crystallization by particle attachment (CPA). Given the ubiquitous presence of WLP-like precursors in syntheses of numerous zeolites, CPA processes may prove to be broadly representative of growth mechanisms for other zeolite framework types and related materials.

  • 出版日期2016-3-22