摘要

The measurement principle of vortex flowmeter is based on von Karman vortex shedding phenomenon. Frequency of vortices, behind the bluff body, is proportional to the mean flow velocity. There are different ways of detection of vortices, and different sensors are used (presser sensors, capacitive sensors, thermo-resistance sensors, ultrasonic sensors, etc.). Proposed method to vortex identification, presented in this paper is based on simultaneous detection of pair of vortices with opposite circulation, by means of two pairs of ultrasonic transducers. A beam of ultrasound, from ultrasonic transmitter to ultrasonic receiver is transmitted perpendicularly to the vortex street. The received ultrasonic signal is amplitude and phase modulated. Frequency of demodulated signal is equal to the frequency of vortices. This technique allows a number of advantages comparing to conventional solutions: reduction, or elimination of noises caused by installation vibration and disturbances in the flow, higher sensor sensitivity, which as a result leads to a possibility of a reduction of the bluff body size, i.e. reduction of the pressure drop on the flow meter, increase of the measurement range in the low flow region, the possibility of redundant operation of the flow meter, reduced measurement uncertainty, instrument technology improvements, improved reliability of the instrument, assured improved statement of complete uncertainty contributions, improved metrology of the equipment as such and calibration procedures that contribute to measuring capabilities etc. For experimental testing a prototype vortex flowmeter of a nominal inner diameter (ID) 50 mm is developed. A cylindrical bluff body for vortex shedding is used. Ultrasonic transducers based on piezo-crystal PZT-5A, inserted in the wall of the vortex meter casing are utilized. The testing of prototype ultrasonic vortex flowmeter is realized on the calibration station on the water. The results at the testing point to the possibility of measuring flow of liquid fluids at velocities less than 0.5 m/s, with an uncertainty better than +/- 1%.

  • 出版日期2015-4