摘要

Wong JD, Wilson ET, Gribble PL. Spatially selective enhancement of proprioceptive acuity following motor learning. J Neurophysiol 105: 2512-2521, 2011. First published March 2, 2011; doi:10.1152/jn.00949.2010.-It is well recognized that the brain uses sensory information to accurately produce motor commands. Indeed, most research into the relationship between sensory and motor systems has focused on how sensory information modulates motor function. In contrast, recent studies have begun to investigate the reverse: how sensory and perceptual systems are tuned based on motor function, and specifically motor learning. In the present study we investigated changes to human proprioceptive acuity following recent motor learning. Sensitivity to small displacements of the hand was measured before and after 10 min of motor learning, during which subjects grasped the handle of a robotic arm and guided a cursor to a series of visual targets randomly located within a small workspace region. We used a novel method of assessing proprioceptive acuity that avoids active movement, interhemispheric transfer, and intermodality coordinate transformations. We found that proprioceptive acuity improved following motor learning, but only in the region of the arm's workspace explored during learning. No proprioceptive improvement was observed when motor learning was performed in a different location or when subjects passively experienced limb trajectories matched to those of subjects who actively performed motor learning. Our findings support the idea that sensory changes occur in parallel with changes to motor commands during motor learning.

  • 出版日期2011-5