NaHS restores mitochondrial function and inhibits autophagy by activating the PI3K/Akt/mTOR signalling pathway to improve functional recovery after traumatic brain injury

作者:Xu, Kebin; Wu, Fangfang; Xu, Ke; Li, Zhengmao; Wei, Xiaojie; Lu, Qi; Jiang, Ting; Wu, Fenzan; Xu, Xinlong; Xiao, Jian; Chen, Daqing*; Zhang, Hongyu*
来源:Chemico-Biological Interactions, 2018, 286: 96-105.
DOI:10.1016/j.cbi.2018.02.028

摘要

Traumatic brain injury (TBI) is one of the most serious public health problems in the world. TBI causes neurological deficits by triggering secondary injuries. Hydrogen sulfide (H2S), a gaseous mediator, has been reported to exert neuroprotective effects in central nervous system diseases, such as TBI. However, the molecular mechanisms involved in this effect are still unclear. The present study was designed to explore the ability of NaHS, a H2S donor, to provide neuroprotection in a mouse model of TBI and to discover the associated molecular mechanisms of these protective effects. Here, we found that administration of NaHS not only maintained the integrity of the blood brain barrier (BBB), protected neurons from apoptosis, and promoted remyelination and axonal reparation but also protected mitochondrial function. In addition, we found that autophagy was inhibited after treatment with NaHS following TBI, an effect that was induced by activation of the PI3K/AKT/mTOR signalling pathway. Our study indicated that H2S treatment is beneficial for TBI, pointing to H2S as a potential therapeutic target for treating TBI.