摘要

The main goal of the paper is to design and implement a framework based on the cellular automata (CA) method, which is dedicated to numerical simulations of microstructure evolution in metallic materials under thermal and mechanical processing. Major assumptions and implementation details of the proposed solution involving classes containing dedicated fields and methods are discussed. Finally, the cellular automata framework (CAP) is tested for selected case studies supported by the Windows Workflow Foundation (WWF) approach. Particular attention is put on modelling simple grain growth, static recrystallization and phase transformation phenomena occurring at the microstructure level. Obtained results of simulations as well as performance characteristics are also presented in the paper. As a result, the CA framework, which supports design of complex algorithms with flexible data flow and reusable components is proposed.

  • 出版日期2015-1