An adaptive multilevel multigrid formulation for Cartesian hierarchical grid methods

作者:Hartmann Daniel*; Meinke Matthias; Schroeder Wolfgang
来源:Computers & Fluids, 2008, 37(9): 1103-1125.
DOI:10.1016/j.compfluid.2007.06.007

摘要

A Cartesian grid method with adaptive mesh refinement and multigrid acceleration is presented for the compressible Navier-Stokes equations. Cut cells are used to represent boundaries on the Cartesian grid, while ghost cells are introduced to facilitate the implementation of boundary conditions. A cell-tree data structure is used to organize the grid cells in a hierarchical manner. Cells of all refinement levels are present in this data structure such that grid level changes as they are required in a multigrid context do not have to be carried out explicitly. Adaptive mesh refinement is introduced using phenomenon-based sensors. The application of the multilevel method in conjunction with the Cartesian cut-cell method to problems with curved boundaries is described in detail. A 5-step Runge-Kutta multigrid scheme with local time stepping is used for steady problems and also for the inner integration within a dual time-stepping method for unsteady problems. The inefficiency of customary multigrid methods on Cartesian grids with embedded boundaries requires a new multilevel concept for this application, which is introduced in this paper. This new concept is based on the following novelties: a formulation of a multigrid method for Cartesian hierarchical grid methods, the concept of averaged control volumes, and a mesh adaptation strategy allowing to directly control the number of refined and coarsened cells.

  • 出版日期2008-10