摘要

In this work, an optimum frequency combination (OFC) method is proposed to reconstruct high quality phase information of the complex light field, which is really valuable for many objects such as optical elements and cells. It is shown that the difference image between two symmetrical separated, larger defocused planes contains a lot of lower frequency components of the phase distribution and the higher frequency components can be easily observed in the difference image between two nearly focused planes. Based on the phase transfer PTF), our method combines different frequency components with high Signal-to-Noise Ratio (SNR) together to estimate a more accurate frequency spectrum of the object's phase distribution without any complicated linear or nonlinear regression. Then, we can directly reconstruct a high-quality phase map through inverse Fourier transform. What's more, in order to compensate the phase discrepancy resulted from strong absorption in the intensity, an iterative compensation algorithm is proposed. Both the simulation and experimental results demonstrate that our iterative OFC (IOFC) method can give a computationally efficient and noise-robust phase reconstruction for absorptive phase objects with higher accuracy and fewer defocus planes.