摘要

A hybrid organic-inorganic material composed of poly (3,4-ethylenedioxythiophene), PEDOT, derivatized with 4-(pyrrol-e1-yl) benzoic acid, PyBA, and Keggin-type copper (II)-salt of H3PMo12O40 has been proposed here. Such features as good electronic conductivity of PEDOT, hydrophilic and coordination capabilities of PyBA, the ability of copper (II) ions to link PyBA carboxylic groups, and phosphomolybdate anionic sites, as well as high protonic and mixed-valence conductivities of H3PMo12O40 have been explored here to produce a stable composite material charcterized by reasonable charge propagation dynamics. Characterization and formation of the hybrid ca. 0.6 mu m thick PEDOT/PyBA-CuxHyPMo12O40 films have been asessed by FTIR, XRD, AFM, SEM, as well as using electrochemical methods. Among important feautures of the proposed hybrid system is the ability to undergo reversible charging/discharhging (both under voltammetric and galvanostatic conditions) in a manner analogous to what is observed in battery-type cells. Typical parameters, such as specific capacity, energy, and power densities, are provided and discussed.

  • 出版日期2017-1

全文