摘要

Pseudocontinuous arterial spin labeling (PCASL) can be used to generate noncontrast magnetic resonance angiograms of the cerebrovascular structures. Previously described PCASL-based angiography techniques were limited to two-dimensional projection images or relatively low-resolution three-dimensional (3D) imaging due to long acquisition time. This work proposes a new PCASL-based 3D magnetic resonance angiography method that uses an accelerated 3D radial acquisition technique (VIPR, spoiled gradient echo) as the readout. Benefiting from the sparsity provided by PCASL and noise-like artifacts of VIPR, this new method is able to obtain submillimeter 3D isotropic resolution and whole head coverage with a 8-min scan. Intracranial angiography feasibility studies in healthy (N = 5) and diseased (N = 5) subjects show reduced saturation artifacts in PCASL-VIPR compared with a standard time-of-flight protocol. These initial results show great promise for PCASL-VIPR for static, dynamic, and vessel selective 3D intracranial angiography. Magn Reson Med, 2013.