摘要

This paper presents an efficient distributed model predictive control scheme based on Nash optimality, in which the on-line optimization of the whole system is decomposed into that of several small co-operative agents in distributed structures, thus it can significantly reduce computational complexity in model predictive control of large-scale systems. The relevant nominal stability and the performance on single-step horizon under the communication failure are investigated. The Shell heavy oil fractionator benchmark control problem is illustrated to verify the effectiveness of the proposed control algorithm.