摘要

We have developed a new method, the mass transfer based (MTB) method, for measuring the Langmuir-Hinshelwood (L-H) rate form reaction coefficients of photocatalysts. The conventional method for determining the reaction coefficients disregards the effect of mass transfer on the reaction surface by designing and controlling a reaction process to be reaction-limited. In contrast, the new MTB method takes the mass transfer effect into account by using a computational fluid dynamics (CFD) method. The reaction coefficients can be regressed by the measured reaction rates and the calculated VOC concentrations in the air adjacent to the reaction Surface. Thus, by using the new method, the reaction coefficient of a reaction process can be accurately determined even if it is not reaction-limited. This is very important in cases where it is difficult to realize reaction-limited processes, such as photocatalytic oxidation of VOCs with strong UV radiation intensity. The relative error of the regressed reaction coefficients obtained by the new method is analyzed. To illustrate, we apply this method to measuring the reaction coefficients of TiO2 photocatalytic decomposing formaldehyde. This method is very useful in determining the reaction coefficients of the photocatalytic oxidation of various VOCs sintultaneously.