Activation of AMPK by simvastatin inhibited breast tumor angiogenesis via impeding HIF-1-induced pro-angiogenic factor

作者:Wang, Ji-Chang; Li, Xiong-Xiong; Sun, Xin; Li, Guang-Yue; Sun, Jing-Lan; Ye, Yuan-Peng; Cong, Long-Long; Li, Wei-Ming; Lu, Shao-Ying; Feng, Jun*; Liu, Pei-Jun*
来源:CANCER SCIENCE, 2018, 109(5): 1627-1637.
DOI:10.1111/cas.13570

摘要

Substantial data from preclinical studies have revealed the biphasic effects of statins on cardiovascular angiogenesis. Although some have reported the anti-angiogenic potential of statins in malignant tumors, the underlying mechanism remains poorly understood. The aim of this study is to elucidate the mechanism by which simvastatin, a member of the statin family, inhibits tumor angiogenesis. Simvastatin significantly suppressed tumor cell-conditioned medium-induced angiogenic promotion in vitro, and resulted in dose-dependent anti-angiogenesis in vivo. Further genetic silencing of hypoxia-inducible factor-1 (HIF-1) reduced vascular endothelial growth factor and fibroblast growth factor-2 expressions in 4T1 cells and correspondingly ameliorated HUVEC proliferation facilitated by tumor cell-conditioned medium. Additionally, simvastatin induced angiogenic inhibition through a mechanism of post-transcriptional downregulation of HIF-1 by increasing the phosphorylation level of AMP kinase. These results were further validated by the fact that 5-aminoimidazole-4-carboxamide ribonucleotide reduced HIF-1 protein levels and ameliorated the angiogenic ability of endothelial cells in vitro and in vivo. Critically, inhibition of AMPK phosphorylation by compound C almost completely abrogated simvastatin-induced anti-angiogenesis, which was accompanied by the reduction of protein levels of HIF-1 and its downstream pro-angiogenic factors. These findings reveal the mechanism by which simvastatin induces tumor anti-angiogenesis, and therefore identifies the target that explains the beneficial effects of statins on malignant tumors.