Genetic degeneration of old and young Y chromosomes in the flowering plant Rumex hastatulus

作者:Hough Josh*; Hollister Jesse D; Wang Wei; Barrett Spencer C H; Wright Stephen I
来源:Proceedings of the National Academy of Sciences, 2014, 111(21): 7713-7718.
DOI:10.1073/pnas.1319227111

摘要

Heteromorphic sex chromosomes have originated independently in many species, and a common feature of their evolution is the degeneration of the Y chromosome, characterized by a loss of gene content and function. Despite being of broad significance to our understanding of sex chromosome evolution, the genetic changes that occur during the early stages of Y-chromosome degeneration are poorly understood, especially in plants. Here, we investigate sex chromosome evolution in the dioecious plant Rumex hastatulus, in which X and Y chromosomes have evolved relatively recently and occur in two distinct systems: an ancestral XX/XY system and a derived XX/XY1Y2 system. This polymorphism provides a unique opportunity to investigate the effect of sex chromosome age on patterns of divergence and gene degeneration within a species. Despite recent suppression of recombination and low X-Y divergence in both systems, we find evidence that Y-linked genes have started to undergo gene loss, causing similar to 28% and similar to 8% hemizygosity of the ancestral and derived X chromosomes, respectively. Furthermore, genes remaining on Y chromosomes have accumulated more amino acid replacements, contain more unpreferred changes in codon use, and exhibit significantly reduced gene expression compared with their X-linked alleles, with the magnitude of these effects being greatest for older sex-linked genes. Our results provide evidence for reduced selection efficiency and ongoing Y-chromosome degeneration in a flowering plant, and indicate that Y degeneration can occur soon after recombination suppression between sex chromosomes.

  • 出版日期2014-5-27