摘要

Molybdenum disulfide has recently emerged as a promising two-dimensional semiconducting material for nanoelectronic, optoelectronic, and spintronic applications. Here, we investigate the field-effect transistor behavior of MoS2 with ferromagnetic contacts to explore its potential for spintronics. In such devices, we elucidate that the presence of a large Schottky barrier resistance at the MoS2/ferromagnet interface is a major obstacle for the electrical spin injection and detection. We circumvent this problem by a reduction in the Schottky barrier height with the introduction of a thin TiO2 tunnel barrier between the ferromagnet and MoS2. This results in an enhancement of the transistor on-state current by 2 orders of magnitude and an increment in the field-effect mobility by a factor of 6. Our magnetoresistance calculation reveals that such integration of ferromagnetic tunnel contacts opens up the possibilities for MoS2-based spintronic devices.

  • 出版日期2014-1