摘要

Molecular evolution of the second largest subunit of low copy nuclear RNA polymerase II (RPB2) in allotetrploid StH genomic species of Elymus is characterized here. Our study first reported a 39-bp MITE stowaway element insertion in the genic region of RPB2 gene for all tetraploid Elymus St genome and diploid Pseudoroegneria spicata and P. stipifolia St genome. The sequences on 3';-end are highly conserved, with AGTA in all sequences but H10339 (E. fibrosis), in which the AGTA was replaced with AGAA. All 12 Stowaway-containing sequences encompassed a 9 bp conserved TIRs (GAGGGAGTA). Interestingly, the 5';-end sequence of GGTA which was changed to AGTA or deleted resulted in Stowaway excision in the H genome of Elymus sepcies, in which Stowaway excision did not leave footprint. Another two large insertions in all St genome sequences are also transposable-like elements detected in the genic region of RPB2 gene. Our results indicated that these three transposable element indels have occurred prior to polyploidization, and shaped the homoeologous RPB2 loci in St and H genome of Eymus species. Nucleotide diversity analysis suggested that the RPB2 sequence may evolve faster in the polyploid species than in the diploids. Higher level of polymorphism and genome-specific amplicons generated by this gene indicated that RPB2 is an excellent tool for investigating the phylogeny and evolutionary dynamics of speciation, and the mode of polyploidy formation in Elymus species.

  • 出版日期2007-8